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The constraint surface:

Considerations had been restricted to the case of foliations by
σ = const hypersurfaces

ΣσΣσ

ρS

metric of Euclidean signature will be involved

no gauge condition
... arbitrary choice of foliations & “time evolution” vector field
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The program for the next two lectures:

Our slogan to remember:

some of the arguments and techniques developed originally and applied so far
exclusively only in the Lorentzian case do also apply to Riemannian spaces

Plans:

Constraints as evolutionary systems

open any textbook on GR: ”the constrains are elliptic PDEs”

parabolic-hyperbolic system
... global solution to the involved parabolic equation

strongly hyperbolic system
... study of near Kerr configurations
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The spaces:

The primary space: (M, gab)

M : n+ 1-dimensional (n ≥ 3), smooth, paracompact, connected,
orientable manifold
gab: smooth Lorentzian(−,+,...,+) or Riemannian(+,...,+) metric

Einstein’s equations: restricting the geometry

Gab − Gab = 0

with source term Gab having a vanishing divergence ∇aGab = 0

or, in a more conventionally looking setup

[Rab − 1
2
gabR] + Λ gab = 8π Tab

with matter fields satisfying their field equations with energy-momentum
tensor Tab and with cosmological constant Λ

Gab = 8π Tab − Λ gab
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The explicit form of the constraints:

The projections of Eab = Gab − Gab determine the constraint expressions:[
for the normals to the σ = conts hypersurfaces nene = ε

]

E
(H)

= nenfEef = 1
2 {−ε

(n)

R+ (Ke
e)

2 −KefK
ef − 2 e} = 0

E
(M)

a = ε hean
fEef = ε [DeK

e
a −DaK

e
e − ε pa] = 0

where Da denotes the covariant derivative operator associated with hab and

e = nenf Gef , pa = ε hean
f Gef

it is an underdetermined system: n+ 1 equations for the n (n+ 1) variables

(hij ,Kij)
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A simple example:

Consider the underdetermined equation on Σ ≈ R2 with coordinates (χ, ξ)

(∂2
χ + ∂2

ξ )u+ (∂χ − ∂ξ)v+ (a ∂χ − ∂2
ξ )w+ z = 0

it is an equation for the involved four variables u, v, w and z on Σ ≈ R2

in advance of solving it three of these variables have to be fixed on Σ

Σ

István Rácz (University of Warsaw & Wigner RCP) UW-ITP, 22 November 2018 6 / 24



A simple example:

It is an elliptic equation for u on R2 :

(∂2
χ + ∂2

ξ )u+ (∂χ − ∂ξ)v+ (a ∂χ − ∂2
ξ )w+ z = 0

in solving this equation the variables v, w and z have to be specified on R2

the variable u has also to be fixed at the boundaries Sout and Sin

ΣΣ

Sout

u|Sout

Σ

Sout

Sin

u|Sout

u|S
in

Σ

Sout

Sin

u|Sout

u|S
in
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A simple example:

It is a hyperbolic equation for v on R2 :

(∂2
χ + ∂2

ξ )u+ (∂χ − ∂ξ)v+ (a ∂χ − ∂2
ξ )w+ z = 0

in solving this equation the variables u, w and z have to be specified on R2

the variable v has also to be fixed at the initial data surface Sin.data

ΣΣ

Sin.data

v|Sin.data

Σ

Sin.data

v|Sin.data

Σ

Sin.data

v|Sin.data
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A simple example:

It is a parabolic equation for w on R2 :

(∂2
χ + ∂2

ξ )u+ (∂χ − ∂ξ)v+ (a ∂χ − ∂2
ξ )w+ z = 0

in solving this equation the variables u, v and z have to be fixed on R2 : a > 0

the variable w has also to be fixed at the initial data surface Sin.data

ΣΣ

Sin.data

w|
Sin.data

Σ

Sin.data

w|
Sin.data

Σ

Sin.data

w|
Sin.data
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A simple example:

It is a parabolic equation for w on R2 :

(∂2
χ + ∂2

ξ )u+ (∂χ − ∂ξ)v+ (a ∂χ − ∂2
ξ )w+ z = 0

in solving this equation the variables u, v and z have to be fixed on R2 : a < 0

the variable w has also to be fixed at the initial data surface Sin.data

Σ

Sin.data

w|
Sin.data

Σ

Sin.data

w|
Sin.data

Σ

Sin.data

w|
Sin.data
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A simple example:

It is an algebraic equation for z :

(∂2
χ + ∂2

ξ )u+ (∂2
χ − ∂2

ξ )v+ (a ∂χ − ∂2
ξ )w+ z = 0

once the variables u, v, w are specified on R2 the solution is determined as

z = −
[
(∂2
χ + ∂2

ξ )u+ (∂2
χ − ∂2

ξ )v+ (a ∂χ − ∂2
ξ )w
]
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The conformal (elliptic) method:

Lichnerowicz A (1944) and York J W (1972):

replace

hij = φ
4

n−2 h̃ij and Kij − 1
n hij K

l
l = φ−2 K̃ij

using these variables the constraints are put into a semilinear elliptic system

D̃lD̃lφ+ n−2
4 (n−1)

ε R̃ φ+ n−2
4 (n−1)

K̃ijK̃
ij φ

2−3n
n−2 −

[
n−2
4n

(Kl
l)

2 − n−2
2 (n−1)

e
]
φ
n+2
n−2 = 0

where D̃l, R̃, ........ h̃ij

K̃ij = K̃
[L]
ij + K̃

[TT ]
ij , where K̃

[L]
ij =

(
D̃iXj + D̃jXi − 2

n h̃ijD̃
lXl

)

D̃lD̃lXi + n−2
n D̃i(D̃

lXl) + R̃i
lXl − n−1

n φ
2n
n−2 D̃i(K

l
l) + ε φ

2 (n+2)
n−2 pi = 0

(hij ,Kij) ←→
(
φ, h̃ij ;K

l
l, Xi, K̃

[TT ]
ij

)
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The conformal method:
Impressive mathematical developments since 1944 but ...

either “constancy” of Kl
l or “smallness” of the TT part of K̃ij is required

it is highly implicit due to its elliptic character and the replacements

hij = φ
4

n−2 h̃ij and Kij = 1
n
φ

4
n−2 h̃ij K

l
l + φ−2 K̃ij =⇒

no direct control on the physical parameters of the initial data specifications

boundary conditions:

are known to influence solutions everywhere in their domains

the inner boundary conditions—they are applied with excision in the black
hole interior—cannot simply be supported by intuition (trumpet data ... )

Bowen-York type initial data: h̃ij is flat h̃ij = δij and Kl
l = 0 ((((Kerr BH

non-negligible spurious gravitational wave content of yielded time evolutions

Σ

Sout

Sin
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The constraint surface:

Considerations will be restricted to a specific σ = const hypersurface
with some foliation

ΣσΣσ

ρS

metric of Euclidean signature will be involved

no gauge condition
... arbitrary choice of foliations & “time evolution” vector field
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The constraints as evolutionary systems:

Restrictions on the topology of Σ:

Σ can be foliated by the ρ = const level surfaces—by a one-parameter family of
homologous codimension-one surfaces Sρ—such that (apart from possible critical

points) the gradient Diρ does not vanish on Σ. =⇒ n̂i ∼ Diρ

ΣΣ

n

n

n

Σ

i

i

i

n
i

ni

ni

ni

ni

n
i

Assume the existence of a smooth Morse function ρ : Σ→ R that possesses only
isolated non-degenerate critical points on Σ each with index zero.

[The critical points of a Morse function ρ (at which Diρ = 0) are know to be
isolated and non-degenerate in the sense that the Hessian of ρ is non-singular at
those points. The index of a critical point is the number of the negative eigenvalues
of the Hessian there.]
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How restrictive are these conditions?

Examples:

All the product spaces of the form R×S and S1 ×S are allowed, where
the factor S is a codimension-one manifold in Σ with arbitrary topology.
This product structure guarantee that the “height function” determined by
the factor R (mod) on Σ will be a Morse function with no critical point.

R × S
n-1

R × S
n-1

S
1
 × S

n-1

S
1
 × S

n-1
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What happens if we close one or two ends of a cylinder?

Examples:

All the product spaces of the form R×S and S1 ×S are allowed, where the
factor S is a codimension-one manifold in Σ with arbitrary topology.
This product structure guarantee that the “height function” determined by the
factor R (mod) on Σ will be a Morse function with no critical point.

Σ = Rn

with S = Rn−1, or
with S = Sn−1: corresponding to the Morse function ρ =

∑n
i=1(xi)

2 with
zero index at the origin in Rn

n-dimensional sphere Sn foliated by codimension-one spheres Sn−1

with height function ρ(x1, . . . , xn+1) 7→ xn+1, where
Sn = {(x1, . . . , xn+1) ∈ Rn+1 |

∑n+1
i=1 (xi)

2 = R2} and the critical points
(with zero index) are the north and south poles are represented by the points
located at (0, . . . , 0,R) and (0, . . . , 0,−R) in Rn+1, respectively.

R
n
 = R

+
 × S

n-1
S

n
 = [a,b] × S

n-1
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New variables by applying (n− 1) + 1 decompositions:

Splitting of the metric hij :

assumed: Σ ≈ R×S a.e. (almost everywhere)

Σ is smoothly foliated by a one-parameter family of codimension-one surfaces Sρ :
ρ = const level surfaces of a smooth real function ρ : Σ→ R with ∂iρ 6= 0

=⇒ n̂i ≈ ∂iρ . . . & . . . hij −→ n̂i = hij n̂j −→ γ̂ij = δij − n̂in̂j

note that as hkl is Riemannian no ε appears in n̂in̂i = 1

induced metric on the ρ = const level surfaces

γ̂ij = γ̂ki γ̂
l
j hkl

the metric hij can then be given as

hij = γ̂ij + n̂in̂j ⇐⇒ {n̂i, γ̂ij}
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The “time evolution vector field”:

The decomposition of the :

A vector field ρi on Σ is a flow, or a “time evolution vector field” on Σ IF

its integral curves intersecting each of the Sρ level surfaces precisely once;
yielding a n− 1-parameter family of smooth curves

and it is scaled such that ρjDjρ = 1

the ‘lapse’ and ‘shift’ of ρi = (∂ρ)
i = ρi⊥ + ρi‖ = N̂ n̂i + N̂ i where

N̂ = ρj n̂j and N̂ i = γ̂ij ρ
j , !!! hij = γ̂ij + n̂in̂j = γ̂ij + N̂−2(ρi − N̂ i)(ρj − N̂ j)

ΣΣ

ρi ρi

ρi

ρi

iρ

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

Σ

N

Nn
i

ρi ρi

ρi

ρi

iρ

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

ρi

i
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Decompositions of a symmetric tensor field Pij :

Consider an arbitrary symmetric tensor field Pij defined on Σ :

using n̂a and γ̂ij it can be decomposed as

Pij = π n̂in̂j + [n̂i pj + n̂j pi] + Pij

where π = n̂kn̂l Pkl, pi = γ̂kin̂
l Pkl, Pij = γ̂kiγ̂

l
j Pkl

It is also rewarding to inspect the decomposition of the contraction DiPij :

(DlPlk) n̂k = Ln̂π + D̂lpl + [π (K̂l
l)−PklK̂

kl − 2 ˙̂nlpl]

(DlPlk) γ̂ki = Ln̂pi + D̂lPli + [(K̂l
l)pi + ˙̂ni π − ˙̂nlPli]

(DkPl
l) n̂k = Ln̂π + Ln̂Pl

l

(DkPl
l) γ̂ki = D̂iπ + D̂iPl

l
, where ˙̂ni := n̂lDln̂i = −D̂i ln N̂

and

K̂ij = γ̂liDl n̂j = 1
2 Ln̂γ̂ij and K̂l

l = γ̂ijK̂ij = 1
2 γ̂

ijLn̂γ̂ij = Di n̂
i
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The new variables:

The momentum constraint:

E
(M)

a = ε hean
fEef = ε [DeK

e
a −DaK

e
e − ε pa] = 0

The splitting of the extrinsic curvature Kij :

Kij = κ n̂in̂j + [n̂i kj + n̂j ki] + Kij

where

κ = n̂kn̂lKkl , ki = γ̂kin̂
lKkl and Kij = γ̂kiγ̂

l
j Kkl

the trace and trace free parts of Kij

Kl
l = γ̂klKkl and

◦
Kij = Kij − 1

n−1 γ̂ijK
l
l

the independent components of (hij ,Kij) are represented by the variables

(N̂ , N̂ i, γ̂ij ;κ,ki,K
l
l,

◦
Kij)
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The momentum constraint:

The momentum constraint:

E
(M)

a = ε hean
fEef = ε [DeK

e
a −DaK

e
e − ε pa] = 0

The decomposition of the contraction DiKij :

(DlKlk) n̂k = Ln̂κ + D̂lkl + [κ (K̂l
l)−KklK̂

kl − 2 ˙̂nlkl]

(DlKlk) γ̂ki = Ln̂ki + D̂lKli + [(K̂l
l)ki + ˙̂ni κ− ˙̂nlKli]

(DkKl
l) n̂k = Ln̂κ + Ln̂Kl

l

(DkKl
l) γ̂ki = D̂iκ + D̂iKl

l

The principal parts of the decompositions of DlKkl −DkK
l
l:

as Kij =
◦
Kij + 1

n−1 γ̂ijK
l
l

[DlKlk −DkKl
l ] n̂k = −Ln̂K l

l + D̂lkl + (l.o.t.)

[DlKlk −DkKl
l ] γ̂ki = Ln̂ ki − n−2

n−1 D̂iKl
l − D̂iκ + D̂l ◦Kli + (l.o.t.)
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The momentum constraint:
First order symmetric hyperbolic system:

Ln̂ki − n−2
n−1

D̂i(K
l
l)− D̂iκ + D̂l ◦Kli + (K̂l

l)ki + κ ˙̂ni − ˙̂nlKli − ε pl γ̂li = 0 (1)

Ln̂(Kl
l)− D̂lkl − κ (K̂l

l) + KklK̂
kl + 2 ˙̂nl kl + ε pl n̂

l = 0 (2)

notably, n−1
n−2

N̂ γ̂ij times of (1) and N̂ times of (2) when writing them out in (local)

coordinates (ρ, x2, . . . , xn), adopted to the foliation Sρ and the vector field ρi,

{(
n−1
n−2

γ̂AB 0

0 1

)
∂ρ +

(
−n−1
n−2

N̂K γ̂AB −N̂ γ̂AK

−N̂ γ̂BK −N̂K

)
∂K

} kB

KE
E

+

(
BA

(k)

B(K)

)
= 0

indep. of ε: a first order symmetric hyperbolic system for the vector valued variable

(kB ,K
E
E)T

where the ‘radial coordinate’ ρ plays the role of ‘time’.

HW (5) ... with characteristic cone (apart from the surfaces Sρ with n̂iξi = 0)[
γ̂ij −

(
n−1
n−2

)
n̂in̂j

]
ξiξj =

[
hij −

(
1 + n−1

n−2

)
n̂in̂j

]
ξiξj = 0
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That is all for now...
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