On the use of evolutionary methods in metric theories of

 gravity V.
István Rácz

istvan.racz@fuw.edu.pl \& racz.istvan@wigner.mta.hu
Faculty of Physics, University of Warsaw, Warsaw, Poland Wigner Research Center for Physics, Budapest, Hungary

Supported by the POLONEZ programme of the National Science Centre of Poland which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.

Institute of Theoretical Physics, University of Warsaw Warsaw, 22 November 2018

The constraint surface:

- Considerations had been restricted to the case of foliations by $\sigma=$ const hypersurfaces

- metric of Euclidean signature will be involved
- no gauge condition
... arbitrary choice of foliations \& "time evolution" vector field

The program for the next two lectures:

Our slogan to remember:

some of the arguments and techniques developed originally and applied so far exclusively only in the Lorentzian case do also apply to Riemannian spaces

Plans:

- Constraints as evolutionary systems
- open any textbook on GR: "the constrains are elliptic PDEs"
- parabolic-hyperbolic system
... global solution to the involved parabolic equation
- strongly hyperbolic system
... study of near Kerr configurations

References:

- I. Rácz: Constraints as evolutionary systems, CQG 33015014 (2016)
- I. Rácz: Cauchy problem as a two-surface based 'geometrodynamics', CQG 33015006 (2015)
- I. Rácz and J. Winicour: Black hole initial data without elliptic equations, Phys. Rev. D 91, 124013 (2015)
- I. Rácz and J. Winicour: Toward computing gravitational initial data without elliptic solvers, CQG 35135002 (2018)
- I. Rácz: On the evolutionary form of the constraints in electrodynamics, arXiv:1811.06873 [gr-qc] (2018)

The spaces:

- The primary space: $\left(M, g_{a b}\right)$
- $M: n+1$-dimensional $(n \geq 3)$, smooth, paracompact, connected, orientable manifold
- $g_{a b}$: smooth Lorentzian $(-,+, \ldots,+)$ or Riemannian $(+, \ldots,+)$ metric
- Einstein's equations: restricting the geometry

$$
G_{a b}-\mathscr{G}_{a b}=0
$$

with source term $\mathscr{G}_{a b}$ having a vanishing divergence $\nabla^{a} \mathscr{G}_{a b}=0$

- or, in a more conventionally looking setup

$$
\left[R_{a b}-\frac{1}{2} g_{a b} R\right]+\Lambda g_{a b}=8 \pi T_{a b}
$$

with matter fields satisfying their field equations with energy-momentum tensor $T_{a b}$ and with cosmological constant Λ

$$
\mathscr{G}_{a b}=8 \pi T_{a b}-\Lambda g_{a b}
$$

The explicit form of the constraints:

- The projections of $E_{a b}=G_{a b}-\mathscr{G}_{a b}$ determine the constraint expressions: [for the normals to the $\sigma=$ conts hypersurfaces $n^{e} n_{e}=\epsilon$]

$$
\begin{aligned}
E^{(\mathcal{H})} & =n^{e} n^{f} E_{e f}=\frac{1}{2}\left\{-\epsilon^{(n)} R+\left(K^{e}{ }_{e}\right)^{2}-K_{e f} K^{e f}-2 \mathfrak{e}\right\}=0 \\
E_{a}^{(\mathcal{M})} & =\epsilon h^{e}{ }_{a} n^{f} E_{e f}=\epsilon\left[D_{e} K^{e}{ }_{a}-D_{a} K^{e}{ }_{e}-\epsilon \mathfrak{p}_{a}\right]=0
\end{aligned}
$$

- where D_{a} denotes the covariant derivative operator associated with $h_{a b}$ and

$$
\mathfrak{e}=n^{e} n^{f} \mathscr{G}_{e f}, \quad \mathfrak{p}_{a}=\epsilon h_{a}^{e} n^{f} \mathscr{G}_{e f}
$$

- it is an underdetermined system: $n+1$ equations for the $n(n+1)$ variables

$$
\left(h_{i j}, K_{i j}\right)
$$

A simple example:

Consider the underdetermined equation on $\Sigma \approx \mathbb{R}^{2}$ with coordinates (χ, ξ)

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- it is an equation for the involved four variables u, v, w and z on $\Sigma \approx \mathbb{R}^{2}$
- in advance of solving it three of these variables have to be fixed on Σ

A simple example:

It is an elliptic equation for u on \mathbb{R}^{2} :

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- in solving this equation the variables v, w and z have to be specified on \mathbb{R}^{2}
- the variable u has also to be fixed at the boundaries $\mathrm{S}_{\text {out }}$ and $\mathrm{S}_{\text {in }}$

A simple example:

It is a hyperbolic equation for v on \mathbb{R}^{2} :

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- in solving this equation the variables u, w and z have to be specified on \mathbb{R}^{2}
- the variable v has also to be fixed at the initial data surface $\mathrm{S}_{\text {in.data }}$

A simple example:

It is a parabolic equation for w on \mathbb{R}^{2} :

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- in solving this equation the variables u, v and z have to be fixed on $\mathbb{R}^{2}: a>0$
- the variable w has also to be fixed at the initial data surface $S_{\text {in.data }}$

A simple example:

It is a parabolic equation for w on \mathbb{R}^{2} :

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}-\partial_{\xi}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- in solving this equation the variables u, v and z have to be fixed on \mathbb{R}^{2} : $a<0$
- the variable w has also to be fixed at the initial data surface $S_{\text {in.data }}$

A simple example:

It is an algebraic equation for z :

$$
\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}^{2}-\partial_{\xi}^{2}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w+z=0
$$

- once the variables u, v, w are specified on \mathbb{R}^{2} the solution is determined as

$$
\boldsymbol{z}=-\left[\left(\partial_{\chi}^{2}+\partial_{\xi}^{2}\right) u+\left(\partial_{\chi}^{2}-\partial_{\xi}^{2}\right) v+\left(a \partial_{\chi}-\partial_{\xi}^{2}\right) w\right]
$$

The conformal (elliptic) method:

Lichnerowicz A (1944) and York J W (1972):

- replace

$$
h_{i j}=\phi^{\frac{4}{n-2}} \widetilde{h}_{i j} \quad \text { and } \quad K_{i j}-\frac{1}{n} h_{i j} K_{l}^{l}=\phi^{-2} \widetilde{K}_{i j}
$$

- using these variables the constraints are put into a semilinear elliptic system

$$
\widetilde{D}^{l} \widetilde{D}_{l} \phi+\frac{n-2}{4(n-1)} \epsilon \widetilde{R} \phi+\frac{n-2}{4(n-1)} \widetilde{K}_{i j} \widetilde{K}^{i j} \phi^{\frac{2-3 n}{n-2}}-\left[\frac{n-2}{4 n}\left(K_{l}^{l}\right)^{2}-\frac{n-2}{2(n-1)} \mathfrak{e}\right] \phi^{\frac{n+2}{n-2}}=0
$$

where $\widetilde{D}_{l}, \widetilde{R}, \ldots \ldots \ldots . \widetilde{h}_{i j}$

$$
\begin{aligned}
& \widetilde{K}_{i j}=\widetilde{K}_{i j}^{[L]}+\widetilde{K}_{i j}^{[T T]} \text {, where } \widetilde{K}_{i j}^{[L]}=\left(\widetilde{D}_{i} X_{j}+\widetilde{D}_{j} X_{i}-\frac{2}{n} \widetilde{h}_{i j} \widetilde{D}^{l} X_{l}\right) \\
& \widetilde{D}^{l} \widetilde{D}_{l} X_{i}+\frac{n-2}{n} \widetilde{D}_{i}\left(\widetilde{D}^{l} X_{l}\right)+\widetilde{R}_{i}^{l} X_{l}-\frac{n-1}{n} \phi^{\frac{2 n}{n-2}} \widetilde{D}_{i}\left(K^{l}{ }_{l}\right)+\epsilon \phi^{\frac{2(n+2)}{n-2}} \mathfrak{p}_{i}=0
\end{aligned}
$$

$$
\left(h_{i j}, K_{i j}\right) \longleftrightarrow\left(\phi, \widetilde{h}_{i j} ; K_{l}^{l}, X_{i}, \widetilde{K}_{i j}^{[T T]}\right)
$$

The conformal method:

Impressive mathematical developments since 1944 but

- either "constancy" of $K^{l}{ }_{l}$ or "smallness" of the TT part of $\widetilde{K}_{i j}$ is required
- it is highly implicit due to its elliptic character and the replacements

$$
h_{i j}=\phi^{\frac{4}{n-2}} \widetilde{h}_{i j} \text { and } K_{i j}=\frac{1}{n} \phi^{\frac{4}{n-2}} \widetilde{h}_{i j} K_{l}^{l}+\phi^{-2} \widetilde{K}_{i j}
$$

\qquad

- no direct control on the physical parameters of the initial data specifications
- boundary conditions:
- are known to influence solutions everywhere in their domains
- the inner boundary conditions-they are applied with excision in the black hole interior-cannot simply be supported by intuition (trumpet data ...)
- Bowen-York type initial data: $\widetilde{h}_{i j}$ is flat $\widetilde{h}_{i j}=\delta_{i j}$ and $K^{l}{ }_{l}=0$ Kerr-BH non-negligible spurious gravitational wave content of yielded time evolutions

The constraint surface:

- Considerations will be restricted to a specific $\sigma=$ const hypersurface with some foliation

- metric of Euclidean signature will be involved
- no gauge condition
... arbitrary choice of foliations \& "time evolution" vector field

The constraints as evolutionary systems:

Restrictions on the topology of Σ :

- Σ can be foliated by the $\rho=$ const level surfaces-by a one-parameter family of homologous codimension-one surfaces \mathscr{S}_{ρ}-such that (apart from possible critical points) the gradient $D_{i} \rho$ does not vanish on $\Sigma . \Longrightarrow \widehat{n}_{i} \sim D_{i} \rho$

- Assume the existence of a smooth Morse function $\rho: \Sigma \rightarrow \mathbb{R}$ that possesses only isolated non-degenerate critical points on Σ each with index zero.
[The critical points of a Morse function ρ (at which $D_{i} \rho=0$) are know to be isolated and non-degenerate in the sense that the Hessian of ρ is non-singular at those points. The index of a critical point is the number of the negative eigenvalues of the Hessian there.]

How restrictive are these conditions?

Examples:

- All the product spaces of the form $\mathbb{R} \times \mathscr{S}$ and $\mathbb{S}^{1} \times \mathscr{S}$ are allowed, where the factor \mathscr{S} is a codimension-one manifold in Σ with arbitrary topology. This product structure guarantee that the "height function" determined by the factor $\mathbb{R}(\bmod)$ on Σ will be a Morse function with no critical point.

$$
R \times S^{n-1}
$$

$$
S^{1} \times S^{n-1}
$$

$$
R \times S^{n-1}
$$

$$
S^{1} \times S^{n-1}
$$

What happens if we close one or two ends of a cylinder?

Examples:

- All the product spaces of the form $\mathbb{R} \times \mathscr{S}$ and $\mathbb{S}^{1} \times \mathscr{S}$ are allowed, where the factor \mathscr{S} is a codimension-one manifold in Σ with arbitrary topology.
This product structure guarantee that the "height function" determined by the factor $\mathbb{R}(\bmod)$ on Σ will be a Morse function with no critical point.
- $\Sigma=\mathbb{R}^{n}$
- with $\mathscr{S}=\mathbb{R}^{n-1}$, or
- with $\mathscr{S}=\mathbb{S}^{n-1}$: corresponding to the Morse function $\rho=\sum_{i=1}^{n}\left(x_{i}\right)^{2}$ with zero index at the origin in \mathbb{R}^{n}
- n-dimensional sphere \mathbb{S}^{n} foliated by codimension-one spheres \mathbb{S}^{n-1}
- with height function $\rho\left(x_{1}, \ldots, x_{n+1}\right) \mapsto x_{n+1}$, where $\mathbb{S}^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n+1}\left(x_{i}\right)^{2}=\mathcal{R}^{2}\right\}$ and the critical points (with zero index) are the north and south poles are represented by the points located at $(0, \ldots, 0, \mathcal{R})$ and $(0, \ldots, 0,-\mathcal{R})$ in \mathbb{R}^{n+1}, respectively.

$$
R^{n}=R^{+} \times S^{n-1} \quad S^{n}=[a, b] \times S^{n-1}
$$

New variables by applying $(n-1)+1$ decompositions:

Splitting of the metric $h_{i j}$:

assumed:

$$
\Sigma \approx \mathbb{R} \times \mathscr{S}
$$

a.e. (almost everywhere)
Σ is smoothly foliated by a one-parameter family of codimension-one surfaces \mathscr{S}_{ρ} : $\rho=$ const level surfaces of a smooth real function $\rho: \Sigma \rightarrow \mathbb{R}$ with $\partial_{i} \rho \neq 0$

$$
\Longrightarrow \quad \widehat{n}_{i} \approx \partial_{i} \rho \ldots \& \ldots h^{i j} \longrightarrow \widehat{n}^{i}=h^{i j} \widehat{n}_{j} \longrightarrow \widehat{\gamma}_{j}^{i}=\delta_{j}^{i}-\widehat{n}^{i} \widehat{n}_{j}
$$

- note that as $h_{k l}$ is Riemannian no ϵ appears in $\widehat{n}^{i} \widehat{n}_{i}=1$
- induced metric on the $\rho=$ const level surfaces

$$
\widehat{\gamma}_{i j}=\widehat{\gamma}^{k}{ }_{i} \widehat{\gamma}_{j}^{l} h_{k l}
$$

- the metric $h_{i j}$ can then be given as

$$
h_{i j}=\widehat{\gamma}_{i j}+\widehat{n}_{i} \widehat{n}_{j} \quad \Longleftrightarrow\left\{\widehat{n}_{i}, \widehat{\gamma}_{i j}\right\}
$$

The "time evolution vector field":

The decomposition of the :

A vector field ρ^{i} on Σ is a flow, or a "time evolution vector field" on Σ IF

- its integral curves intersecting each of the \mathscr{S}_{ρ} level surfaces precisely once; yielding a $n-1$-parameter family of smooth curves
- and it is scaled such that $\rho^{j} D_{j} \rho=1$
- the 'lapse' and 'shift' of $\rho^{i}=\left(\partial_{\rho}\right)^{i}=\rho_{\perp}^{i}+\rho_{\|}^{i}=\widehat{N} \widehat{n}^{i}+\widehat{N}^{i}$ where

$$
\widehat{N}=\rho^{j} \widehat{n}_{j} \text { and } \widehat{N}^{i}=\widehat{\gamma}^{i}{ }_{j} \rho^{j}, \quad!!!\quad h^{i j}=\widehat{\gamma}^{i j}+\widehat{n}^{i} \widehat{n}^{j}=\widehat{\gamma}^{i j}+\widehat{N}^{-2}\left(\rho^{i}-\widehat{N}^{i}\right)\left(\rho^{j}-\widehat{N}^{j}\right)
$$

Decompositions of a symmetric tensor field $P_{i j}$:

Consider an arbitrary symmetric tensor field $P_{i j}$ defined on Σ :

- using \widehat{n}^{a} and $\widehat{\gamma}^{i}{ }_{j}$ it can be decomposed as

$$
P_{i j}=\boldsymbol{\pi} \widehat{n}_{i} \widehat{n}_{j}+\left[\widehat{n}_{i} \mathbf{p}_{j}+\widehat{n}_{j} \mathbf{p}_{i}\right]+\mathbf{P}_{i j}
$$

- where $\boldsymbol{\pi}=\widehat{n}^{k} \widehat{n}^{l} P_{k l}, \quad \mathbf{p}_{i}=\widehat{\gamma}^{k}{ }_{i} \widehat{n}^{l} P_{k l}, \quad \mathbf{P}_{i j}=\widehat{\gamma}^{k}{ }_{i} \hat{\gamma}^{l}{ }_{j} P_{k l}$

It is also rewarding to inspect the decomposition of the contraction $D^{i} P_{i j}$:

$$
\begin{aligned}
\left(D^{l} P_{l k}\right) \widehat{n}^{k} & =\mathscr{L}_{\overparen{n}} \boldsymbol{\pi}+\widehat{D}^{l} \mathbf{p}_{l}+\left[\boldsymbol{\pi}\left(\widehat{K}_{l}^{l}\right)-\mathbf{P}_{k l} \widehat{K}^{k l}-2 \dot{\hat{n}}^{l} \mathbf{p}_{l}\right] \\
\left(D^{l} P_{l k}\right) \hat{\gamma}^{k}{ }_{i} & =\mathscr{L}_{\overparen{n}} \mathbf{p}_{i}+\widehat{D}^{l} \mathbf{P}_{l i}+\left[\left(\widehat{K}^{l}{ }_{l}\right) \mathbf{p}_{i}+\dot{\hat{n}}_{i} \boldsymbol{\pi}-\dot{\hat{n}}^{l} \mathbf{P}_{l i}\right]
\end{aligned}
$$

$$
\begin{gathered}
\left(D_{k} P_{l}^{l}\right) \widehat{n}^{k}=\mathscr{L}_{\widehat{n}} \boldsymbol{\pi}+\mathscr{L}_{\hat{n}} \mathbf{P}_{l}^{l} \\
\left(D_{k} P_{l}^{l}\right) \hat{\gamma}^{k}{ }_{i}=\widehat{D}_{i} \boldsymbol{\pi}+\widehat{D}_{i} \mathbf{P}_{l}^{l} \\
\text { and }
\end{gathered} \text { where } \begin{gathered}
\dot{\hat{n}}_{i}:=\widehat{n}^{l} D_{l} \widehat{n}_{i}=-\widehat{D}_{i} \ln \widehat{N} \\
\text { and }
\end{gathered}
$$

$$
\widehat{K}_{i j}=\widehat{\gamma}_{i}^{l} D_{l} \widehat{n}_{j}=\frac{1}{2} \mathscr{L}_{\widehat{n}} \widehat{\gamma}_{i j} \quad \text { and } \quad \widehat{K}^{l}{ }_{l}=\widehat{\gamma}^{i j} \widehat{K}_{i j}=\frac{1}{2} \widehat{\gamma}^{i j} \mathscr{L}_{\widehat{n}} \widehat{\gamma}_{i j}=D_{i} \widehat{n}^{i}
$$

The new variables:

The momentum constraint:

$$
E_{a}^{(\mathcal{M})}=\epsilon h_{a}^{e} n^{f} E_{e f}=\epsilon\left[D_{e} K_{a}^{e}-D_{a} K_{e}^{e}-\epsilon \mathfrak{p}_{a}\right]=0
$$

The splitting of the extrinsic curvature $K_{i j}$:

-

$$
K_{i j}=\boldsymbol{\kappa} \widehat{n}_{i} \widehat{n}_{j}+\left[\widehat{n}_{i} \mathbf{k}_{j}+\widehat{n}_{j} \mathbf{k}_{i}\right]+\mathbf{K}_{i j}
$$

where

$$
\boldsymbol{\kappa}=\widehat{n}^{k} \widehat{n}^{l} K_{k l}, \quad \mathbf{k}_{i}=\widehat{\gamma}_{i}^{k}{ }_{i} \widehat{n}^{l} K_{k l} \quad \text { and } \quad \mathbf{K}_{i j}=\widehat{\gamma}^{k}{ }_{i} \widehat{\gamma}_{j}^{l} K_{k l}
$$

- the trace and trace free parts of $\mathbf{K}_{i j}$

$$
\mathbf{K}_{l}^{l}=\widehat{\gamma}^{k l} \mathbf{K}_{k l} \quad \text { and } \quad \stackrel{\circ}{\mathbf{K}}_{i j}=\mathbf{K}_{i j}-\frac{1}{n-1} \widehat{\gamma}_{i j} \mathbf{K}_{l}^{l}
$$

- the independent components of $\left(h_{i j}, K_{i j}\right)$ are represented by the variables

$$
\left(\widehat{N}, \widehat{N}^{i}, \widehat{\gamma}_{i j} ; \boldsymbol{\kappa}, \mathbf{k}_{i}, \mathbf{K}_{l}^{l}{ }_{l}, \stackrel{\circ}{\mathbf{K}}_{i j}\right)
$$

The momentum constraint:

The momentum constraint:

$$
E_{a}^{(\mathcal{M})}=\epsilon h^{e}{ }_{a} n^{f} E_{e f}=\epsilon\left[D_{e} K^{e}{ }_{a}-D_{a} K^{e}{ }_{e}-\epsilon \mathfrak{p}_{a}\right]=0
$$

The decomposition of the contraction $D^{i} K_{i j}$:

$$
\begin{aligned}
\left(D^{l} K_{l k}\right) \widehat{n}^{k} & =\mathscr{L}_{\widehat{n}} \boldsymbol{\kappa}+\widehat{D}^{l} \mathbf{k}_{l}+\left[\boldsymbol{\kappa}\left(\widehat{K}^{l}\right)-\mathbf{K}_{k l} \widehat{K}^{k l}-2 \dot{\hat{n}}^{l} \mathbf{k}_{l}\right] \\
\left(D^{l} K_{l k}\right) \widehat{\gamma}^{k}{ }_{i} & =\mathscr{L}_{\widehat{n}} \mathbf{k}_{i}+\widehat{D}^{l} \mathbf{K}_{l i}+\left[\left(\widehat{K}_{l}^{l}\right) \mathbf{k}_{i}+\dot{\hat{n}}_{i} \boldsymbol{\kappa}-\dot{\hat{n}}^{l} \mathbf{K}_{l i}\right] \\
\left(D_{k} K_{l}^{l}\right) \widehat{n}^{k} & =\mathscr{L}_{\widehat{n}} \boldsymbol{\kappa}+\mathscr{L}_{\widehat{n}} \mathbf{K}_{l}^{l} \\
\left(D_{k} K_{l}^{l}\right) \widehat{\gamma}^{k}{ }_{i} & =\widehat{D}_{i} \boldsymbol{\kappa}+\widehat{D}_{i} \mathbf{K}_{l}{ }^{l}
\end{aligned}
$$

The principal parts of the decompositions of $D^{l} K_{k l}-D_{k} K_{l}^{l}$:
as $\mathbf{K}_{i j}=\stackrel{\circ}{\mathbf{K}}_{i j}+\frac{1}{n-1} \widehat{\gamma}_{i j} \mathbf{K}^{l}{ }_{l}$

$$
\begin{aligned}
{\left[D^{l} K_{l k}-D_{k} K_{l}^{l}\right] \widehat{n}^{k} } & =-\mathscr{L}_{\widehat{n}} \mathbf{K}_{l}^{l}+\widehat{D}^{l} \mathbf{k}_{l}+(l . o . t .) \\
{\left[D^{l} K_{l k}-D_{k} K_{l}{ }^{l}\right] \widehat{\gamma}^{k}{ }_{i} } & =\mathscr{L}_{\widehat{n}} \mathbf{k}_{i}-\frac{n-2}{n-1} \widehat{D}_{i} \mathbf{K}_{l}^{l}-\widehat{D}_{i} \boldsymbol{\kappa}+\widehat{D}^{l} \stackrel{\circ}{K}_{l i}+(\text { l.o.t. })
\end{aligned}
$$

The momentum constraint:

First order symmetric hyperbolic system:

$$
\begin{align*}
\mathscr{L}_{\hat{n}} \mathbf{k}_{i}-\frac{n-2}{n-1} \widehat{D}_{i}\left(\mathbf{K}_{l}^{l}\right)-\widehat{D}_{i} \boldsymbol{\kappa}+\widehat{D}^{l} \stackrel{\circ}{\mathbf{K}}_{l i}+\left(\widehat{K}^{l}{ }_{l}\right) \mathbf{k}_{i}+\boldsymbol{\kappa} \dot{\hat{n}}_{i}-\dot{\hat{n}}^{l} \mathbf{K}_{l i}-\epsilon \mathfrak{p}_{l} \widehat{\gamma}^{l}{ }_{i} & =0 \tag{1}\\
\mathscr{L}_{\widehat{n}}\left(\mathbf{K}_{l}^{l}\right)-\widehat{D}^{l} \mathbf{k}_{l}-\boldsymbol{\kappa}\left(\widehat{K}^{l}{ }_{l}\right)+\mathbf{K}_{k l} \widehat{K}^{k l}+2 \dot{\hat{n}}^{l} \mathbf{k}_{l}+\epsilon \mathfrak{p}_{l} \widehat{n}^{l} & =0 \tag{2}
\end{align*}
$$

- notably, $\frac{n-1}{n-2} \widehat{N} \widehat{\gamma}^{i j}$ times of (1) and \widehat{N} times of (2) when writing them out in (local) coordinates $\left(\rho, x^{2}, \ldots, x^{n}\right)$, adopted to the foliation \mathscr{S}_{ρ} and the vector field ρ^{i},

$$
\left\{\left(\begin{array}{cc}
\frac{n-1}{n-2} \widehat{\gamma}^{A B} & 0 \\
0 & 1
\end{array}\right) \partial_{\rho}+\left(\begin{array}{cc}
-\frac{n-1}{n-2} \widehat{N}^{K} \widehat{\gamma}^{A B} & -\widehat{N} \widehat{\gamma}^{A K} \\
-\widehat{N} \widehat{\gamma}^{B K} & -\widehat{N}^{K}
\end{array}\right) \partial_{K}\right\}\binom{\mathbf{k}_{B}}{\mathbf{K}_{E}^{E}}+\binom{\mathscr{B}_{(\mathbf{k})}^{A}}{\mathscr{B}_{(\mathbf{K})}}=0
$$

- indep. of ϵ : a first order symmetric hyperbolic system for the vector valued variable

$$
\left(\mathbf{k}_{B}, \mathbf{K}_{E}^{E}\right)^{T}
$$

where the 'radial coordinate' ρ plays the role of 'time'.

- HW (5) ... with characteristic cone (apart from the surfaces \mathscr{S}_{ρ} with $\widehat{n}^{i} \xi_{i}=0$)

$$
\left[\widehat{\gamma}^{i j}-\left(\frac{n-1}{n-2}\right) \widehat{n}^{i} \widehat{n}^{j}\right] \xi_{i} \xi_{j}=\left[h^{i j}-\left(1+\frac{n-1}{n-2}\right) \widehat{n}^{i} \widehat{n}^{j}\right] \xi_{i} \xi_{j}=0
$$

That is all for now...

